• pooling

  • Mei 2024
    S S R K J S M
     12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
  • Blog Stats

    • 2.703.695 hits
  • Klik tertinggi

    • Tidak ada
  • Pengunjung

  • Statistik

    Add to Technorati Favorites Msn bot last visit powered by MyPagerank.Net Yahoo bot last visit powered by MyPagerank.Net

Dampak Partikulat Terhadap Kesehatan

Secara sederhana partikulat dapat diartikan sebagai salah satu substansi yang selalu ada dalam udara dan berpotensi mencemari udara. Udara itu sendiri secara umum adalah salah satu faktor pendukung kehidupan di muka bumi dan merupakan campuran gas-gas oksigen, nitrogen, dan gas lainnya. Akan tetapi komponen-komponen yang terdapat dalam udara ambien bukan hanya terbatas pada bentuk gas saja, melainkan terkandung juga di dalamnya zat-zat lain yaitu uap air dan partikulat.a_04_01_27_ispa

Pendapat lain, partikulat adalah zat padat/cair yang halus dan tersuspensi di udara, misalnya embunm debu, asap, fumes, dan fog. Debu adalah zat padat berukuran 0,1-25 mikron, sedangkan fumes adalah zat padat hasil kondensasi gas yang biasanya terjadi setelah proses penguapan logam cair. Dengan demikian fumes berukuran sangat kecil yakni kurang dari 1,0 mikron. Asap adalah karbon (C) yang berdiameter kurang dari 0,1 mikron, akibat dari pembakaran hidrat karbon yang kurang sempurna, demikian pula halnya dengan jelaga. Maka partikulat ini dapat terdiri dari zat organik dan anorganik. Sumber alamiah partikulat atmosfer adalah debu yang memasuki atmosfer karena terbawa angin. Sumber artifisial debu terutama adalah pembakaran (batubara, minyak bumi, dan lain-lain) yang dapat menghasilkan jelaga (partikulat yang terdiri dari karbon dan zat lain yang melekat padanya). Sumber lain adalah segala proses yang menimbulkan debu seperti pabrik semen, industri metalurgi, industri konstruksi, industri bahan makanan dan juga kendaraan bermotor.

Menurut WHO besarnya ukuran partikel debu yang dapat masuk kedalam saluran pernafasan manusia adalah yang berukuran 0,1 µm sampai 10 µm dan berada sebagai suspended particulate matter (partikulat melayang dengan ukuran ≤ 10 µm dan dikenal dengan nama PM10).

Dampak yang ditimbulkan PM10 biasanya bersifat akut pada saluran pernafasan bagian bawah seperti pneumonia dan bronchitis baik pada anak-anak maupun pada orang dewasa.

Salah satu partikulat yang penting dapat menyebabkan ISPA adalah mist asam sulfat (H2SO4). Zat ini dapat mengiritasi membran mukosa saluran pernafasan dan menimbulkan bronco konstriksi karena sifatnya yang iritan. Hal ini dapat merusak terhadap saluran pertahanan pernafasan (bulu hidung, silia, selaput lendir) sehingga dengan rusaknya pertahanan pernafasan ini kuman dengan mudah dapat masuk kedalam tubuh dan menimbulkan penyakit infeksi saluran nafas akut.

Sumber:

Kusnoputranto, Kesehatan Lingkungan, 2000

Soemirat, Epidemiologi Lingkungan, 2002

Fardiaz, Polusi Udara dan Air, 1992

Dampak Pencemaran Udara Terhadap Kesehatan

Pencemaran udara merupakan masalah global. Sumber pencemaran udara adalah terutama pembakaran bahan bakar fosil untuk mendapatkan energi untuk industri dan transportasi.

Pencemaran udara pada dasarnya berbentuk partikel (debu, gas, timah hitam) dan gas (Karbon Monoksida (CO), Nitrogen Oksida (NOx) , Sulfur Oksida (SOx), Hidrogen Sulfida (H2S), hidrokarbon). Udara yang tercemar dengan partikel dan gas ini dapat menyebabkan gangguan kesehatan yang berbeda tingkatan dan jenisnya tergantung dari macam, ukuran dan komposisi kimiawinya.

Secara umum efek pencemaran udara terhadap saluran pernafasan dapat menyebabkan terjadinya:

1. Iritasi pada saluran pernafasan. Hal ini dapat menyebabkan pergerakan silia menjadi lambat, bahkan dapat terhenti sehingga tidak dapat membersihkan saluran pernafasan.

2. Peningkatan produksi lendir akibat iritasi oleh bahan pencemar.

3. Produksi lendir dapat menyebabkan penyempitan saluran pernafasan.

4. Rusaknya sel pembunuh bakteri di saluran pernafasan.

5. Pembengkakan saluran pernafasan dan merangsang pertumbuhan sel, sehingga saluran pernafasan menjadi menyempit.

6. Lepasnya silia dan lapisan sel selaput lendir.

Akibat dari hal tersebut di atas, akan menyebabkan terjadinya kesulitan bernafas sehingga benda asing termasuk bakteri/mikroorganisme lain tidak dapat dikeluarkan dari saluran pernafasan dan hal ini akan memudahkan terjadinya infeksi saluran pernafasan.

Tulisan Terkait:

Dampak Partkulat Terhadap Kesehatan

Dampak Karbon Monoksida (CO) Terhadap Kesehatan

Dampak Nitroge Oksida (NOx) Terhadap Kesehatan

Dampak Sulfur Oksida (SOx) Terhadap Kesehatan

Dampak Ozon (O3) Terhadap Kesehatan

Aspek Klimatologi Pencemaran Udara

Oksidan Fotokimia

Oksidan fotokimia adalah komponen atmosfer yang diproduksi oleh proses fotomikia, yaitu suatu proses kimia yang mebutuhkan sinar, yang akan mengoksidasi komponen-komponen yang tidak segera dapat dioksidasi oleh gas oksigen. Senyawa yang terbentuk merupakan polutan sekunder yang diproduksi karena interaksi antara polutan primer dengan sinar. oksidan-fotokimiaHidrokarbon merupakan komponen yang berperan dalam produksi oksidan fotokimia. Reaksi ini juga melibatkan siklus fotolitik NO2 . Polutan sekunder yang paling berbahaya yang dihasilkan oleh reaksi hidrokarbon dalam siklus tersebut adalah ozon ( O3 ) dan peroksiasetilnitrat, yaitu salah satu komponen yang paling sederhana dari grup peroksiasilnitrat (PAN).

Oksidan yang terutama adalah ozon (O3), nitrogen dioksida (NO2) dan peroxyacylnitrate (PAN). NO2 berasal dari hasil reaksi fotokimia NO dengan oksigen di udara. Sedangkan ozon dan PAN berasal dari reaksi fotokimia NO, NO2, SO2 dan radiakal hidrokarbon.

Ozon bukan merupakan hidrokarbon tetapi konsentrasi O3 di atmosfer naik sebagai akibat langsung dari reaksi hidrokarbon, sedangkan PAN merupakan turunan hidrokarbon. Hasil reaksi antara O dengan hidrokarbon merupakan produk intermediat yang sangat reaktif yang disebut hidrokarbon radikal bebas (RO2 ). Radikal bebas semacam ini dapat bereaksi lebih lanjut dengan berbagai komponen termasuk NO, NO2 , O2 , O3 , dan hidrokarbon lainnya. Beberapa reaksi yang mungkin terjadi di antara bermacam-macam reaksi tersebut adalah sebagai berikut (Fardiaz, 1992) :

a. Radikal bebas bereaksi cepat dengan NO membentuk NO2 . Karena NO dihilangkan dari siklus tersebut, akibatnya mekanisme normal untuk menghilangkan O3 dari siklus tidak terjadi, sehingga konsentrasi O3 meningkat.

b. Radikal bebas dapat bereaksi dengan O2 dan NO2 membentuk peroksiasilnitrat.

c. Radikal bebas dapat bereaksi dengan hidrokarbon lainnya dan komponen oksigen membentuk komponen-komponen organik lainnya yang tidak diinginkan.

Campuran produk-produk sebagai akibat gangguan hidrokarbon di dalam siklus fotolitik NO2 disebut smog fotokimia, yaitu terdiri dari kumpulan O3 , CO, PAN dan komponen-komponen organik lainnya termasuk aldehide, keton, dam alkil nitrat. Konsentrasi oksidan di udara dipengaruhi oleh ada tidaknya sinar matahari dan kadar bahan-bahan pencemar primernya di udara. Pada siang hari kadar oksidan mencapai titik maksimum dan malam hari kadar oksidant berada pada titik minimumnya.

Terkait: Dampak Ozon (O3) Terhadap Kesehatan

Sumber :

Fardiaz, Polusi Air dan Udara, 2001

Nitrogen Oksida (NOx)

Nitrogen oksida sering disebut dengan NOx, karena oksida nitrogen mempunyai 2 macam bentuk yang sifatnya berbeda, yaitu gas NO2 dan gas NO. Sifat gas NO2 adalah berwarna dan berbau, sedangkan gas NO tidak berwarna dan tidak berbau. Warna gas NO2 adalah merah kecoklatan dan berbau tajam menyengat hidung.

Dari seluruh jumlah NOx yang dibebaskan ke atmosfer, jumlah yang terbanyak adalah dalam bentuk NO yang diproduksi no2oleh aktivitas bakteri. Akan tetapi poluasi NO dari sumber alami ini tidak merupakan masalah karena tersebar secara merata sehingga jumlahnya menjadi kecil. Yang menjadi masalah adalah polusi NO yang diproduksi oleh kegiatan manusia karena jumlahnya akan meningkat hanya pada tempat-tempat tertentu.

Konsentrasi NOx di udara di daeraah perkotaan biasanya 10-100 kali lebih tinggi daripada di udara daerah pedesaan. Konsentrasi NOx di udara daerah perkotaan dapat mencapai 0,5 ppm (500 ppb). Seperti halnya CO, emisi nitrogen oksida dipengaruhi oleh kepadatan penduduk karena sumber utama NOx yang diproduksi manusia adalah dari pembakaran, dan kebanyakan pembakaran disebabkan oleh kendaraan, produksi energi dan pembuangan sampah. Sebagian besar emisi NOx yang dibuat manusia berasal dari pembakaran arang, minyak, gas alam dan bensin.

Oksida yang lebih rendah yaitu NO terdapat di atmosfer dalam jumlah lebih besar daripada NO2 . Pembentukan NO dan NO2 mencakup reaksi antara nitrogen dan oksigen di udara sehingga membentuk NO, kemudian reaksi selanjutnya antara NO dengan lebih banyak oksigen membentuk NO2. Persamaan reaksinya adalah sebagai berikut :

N2 + O2 ———-> 2NO

2NO + O2 ————> 2NO2

Udara terdiri dari sekitar 80% volume nitrogen dan 20% volume oksigen. Pada suhu kamar kedua gas ini hanya sedikit mempunyai kecenderungan untuk bereaksi satu sama lain. Pada suhu yang lebih tinggi (di atas 1210oC) keduanya dapat bereaksi membentuk nitric oksida dalam jumlah tinggi sehingga mengakibatkan polusi udara. Dalam proses pembakaran, suhu yang digunakan biasanya mencapai 1210-1765oC dengan adanya udara, oleh karena itu reaksi ini merupakan sumber NO yang penting. Jadi reaksi pembentukan NO merupakan hasil samping dalam proses pembakaran.

Pembentukan NO dirangsang hanya pada suhu tinggi, oleh karena itu NO di dalam campuran ekuilibrium pada suhu tinggi akan terdisosiasi kembali menjadi N2 dan O2 jika suhu campuran tersebut diturunkan perlahan-lahan untuk memberikan waktu yang cukup bagi NO untuk terdisosiasi. Akan tetapi jika campuran ekuilibrium tersebut didinginkan secara mendadak, akan banyak NO yang masih terdapat pada campuran suhu rendah tersebut. Pendinginan cepat tersebut sering terjadi pada proses pembakaran.

Reaksi pembentukan NO2 dari NO dan O2 terjadi dalam jumlah relatif kecil, meskipun dengan adanya udara berlebih. Hal ini berbeda dengan reaksi pembentukan CO2 dari CO dan O2, dimana kelebihan udara akan mengakibatkan pembentukan CO2 secara cepat. Pembentukan NO2 yang lambat ini disebabkan kecepatan reaksi sangat dipengaruhi oleh suhu dan konsentrasi NO. Reaksi pembentukan NO2 berlangsung lebih lambat pada suhu yang lebih tinggi. Pada suhu 1100oC jumlah NO2 yang terbentuk biasanya kurang dari 0,5% dari total NOx . kecepatan reaksi pembentukan NO2 dipengaruhi oleh konsentrasi oksigen dan kuadrat dari konsentrasi NO. Hal ini berarti jika konsentrasi NO bertambah menjadi dua kalinya maka kecepatan reaksi akan naik menjadi empat kalinya, dan jika konsentrasi NO berkurang menjadi setengahnya. NO yang dikeluarkan ke udara luar bersama-sama dengan gas buangan lainnya akan mengalami pendinginann secara cepat dan terencerkan sebanyak 100 kalinya.

Dampak NOx Terhadap Kesehatan

Sumber :

Wardhana, Dampak Pencemaran Lingkungan, 2001

Ferdiaz, Polusi Air dan Udara, 1992

Sulfur Oksida (SOx)

Gas belerang oksida atau sering ditulis dengan SOx, terdiri dari gas SO2 dan gas SO3 yang keduanya mempunyai sifat berbeda. Gas SO2 berbau sangat tajam dan tidak mudah terbakar, sedangkan gas SO3 bersifat sangat reaktif. Gas SO3 mudah bereaksi dengan uap air yang ada di udara untuk membentuk asam sulfas atau H2SO4. Asam sulfat ini sangat reaktif, mudah bereaksi (memakan) benda-benda lain yang mengakibatkan kerusakan, seperti proses pengkaratan (korosi) dan proses kimiawi lainnya. Konsentrasi gas SO2 di udara akan mulai terdeteksi oleh indera manusia (tercium baunya) manakala konsentrasinya berkisar antara 0,3 – 1 ppm.emisi-gas-so2

Hanya sepertiga dari jumlah sulfur yang terdapat di atmosfer merupakan hasil dari aktivitas manusia, dan kebanyakan dalam bentuk SO2 . Sebanyak dua pertiga dari jumlah sulfur di atmosfer berasal dari sumber-sumber alam seperti volcano, dan terdapat dalam bentuk H2S dan oksida. Masalah yang ditimbulkan oleh polutan yang dibuat manusia adalah dalam hal distribusinya yang tidak merata sehingga terkonsentrasi pada daerah tertentu, bukan dari jumlah keseluruhannya, sedangkan polusi dari sumber alam biasanya lebih tersebar merata. Transportasi bukan merupakan sumber utama polutan SOx tetapi pembakaran bahan bakar pada sumbernya merupakan sumber utama polutan SOx, misalnya pembakaran batu arang, minyak bakar, gas, kayu dan sebagainya.

Pembakaran bahan-bahan yang mengandung sulfur akan menghasilkan kedua bentuk sulfur oksida, tetapi jumlah relatif masing-masing tidak dipengaruhi oleh jumlah oksigen yang tersedia. Meskipun udara tersedia dalam jumlah cukup, SO2 selalu terbentuk dalam jumlah terbesar. Jumlah SO2 yang terbentuk dipengaruhi oleh kondisi reaksi, terutama suhu dan bervariasi dari 1 sampai 10% dari total SOx.

Mekanisme pembentukan SOx dapat dituliskan dalam dua tahap reaksi sebagai berikut :

S + O2   ———- > SO2

2SO2 + O2 ————> 2SO3

SO3 biasanya diproduksi dalam jumlah kecil selama pembakaran. Hal ini disebabkan oleh dua faktor yang menyangkut reaksi terakhir tersebut di atas. Faktor pertama adalah kecepatan reaksi yang terjadi, dan faktor kedua adalah konsentrasi SO3 dalam campuran ekuilibrium yang dihasilkan dari reaksi tersebut. Reaksi pembentukan SO3 berlangsung sangat lambat pada suhu relatif rendah (misalnya pada 200oC), tetapi kecepatan reaksi meningkat dengan kenaikan suhu. Oleh karena itu produksi SO3 dirangsang pada suhu tinggi karena faktor kecepatan. Tetapi campuran ekuilibrium yang dihasilkan pada suhu rendah mengandung persentase SO3 lebih tinggi daripada campuran yang dihasilkan pada suhu tinggi. Jadi faktor konsentrasi ekuilibrium merangsang produksi SO3 pada suhu lebih rendah. Jelas bahwa kedua faktor tersebut mempunyai kecenderungan untuk menghambat satu sama lain selama pembakaran. Pada suhu tinggi reaksi mengakibatkan ekuilibrium tercapai dengan cepat karena kecepatan reaksi tinggi, tetapi hanya sedikit SO3 terdapat di dalam campuran. Pada suhu rendah, reaksi berlangsung sangat lambat sehingga kondisi ekuilibrium (sesuai dengan konsentrasi SO3 tinggi) tidak pernah tercapai. Jadi produksi SO3 terhambat pada zona pembakaran suhu tinggi karena kondisi ekuilibrium. Jika produk dijauhkan dari zona tersebut dan didinginkan, kondisi ekuilibrium dapat tercapai, tetapi kecepatan reaksi akan menghambat pembenutkan SO3 dalam jumlah tinggi.

Adanya SO3 di udara dalam bentuk gas hanya mungkin jika konsentrasi uap air sangat rendah. Jika usap air terdapat dalam jumlah cukup seperti biasanya, SO3 dan air akan segera bergabung membentuk droplet asam sulfat (H2SO4).

Setelah berada di atmosfer, sebagian SO2 akan diubah menjadi SO3 (kemudian menjadi H2SO4) oleh proses-proses fotolitik dan katalitik. Jumlah SO2 yang teroksidasi menjadi SO3 dipengaruhi oleh beberapa faktor termasuk jumlah air yang tersedia, intensitas, waktu dan distribusi spektrum sinar matahari

Terkait: Dampak Sulfur Oksida (SOx) Terhadap Kesehatan

Sumber :

Wardhana, Dampak Pencemaran Lingkungan, 2001

karbon monoksida (CO)


Karbon monoksida (CO) adalah suatu gas yang tidak berwarna, tidak berbau dan juga tidak berasa. Karbon monoksida yang terdapat di alam terbentuk dari salah satu proses sebagai berikut:

a. Pembakaran tidak lengkap terhadap karbon atau komponen yang mengandung karbon.

b. Reaksi antara karbon dioksida dan komponen yang mengandung karbon pada suhu tinggi.

c. Pada suhu tinggi, karbon dioksida terurai menjadi CO dan O

Gas CO sebagian besar berasal dari pembakaran bahan bakar fosil dengan udara, berupa gas buangan. Kota besar yang padat lalu lintasnya akan banyak menghasilkan gas CO sehingga kadar CO dalam udara relatif tinggi dibandingkan dengan daerah pedesaan. Secara alamiah gas CO dapat juga terbentuk walaupun jumlahnya relatif sedikit, seperti gas hasil kegiatan gunung berapi, proses biologi dan lain-lain.

Secara sederhana pembakaran karbon dalam minyak bakar terjadi melalui beberapa tahap sebagai berikut :

2C + O2 ——–> 2CO

2CO + O2 ——–> 2CO2

Reaksi pertama berlangsung sepuluh kali lebih cepat daripada reaksi kedua, oleh karena itu CO merupakan intermediat pada reaksi pembakaran tersebut dan dapat merupakan produk akhir jika jumlah O2 tidak cukup untuk melangsungkan reaksi kedua. CO juga dapat merupakan produk akhir meskipun jumlah oksigen di dalam campuran pembakaran cukup, tetapi antara minyak bakar dan udara tidak tercampur rata. Pencampuran yang tidak rata antara minyak bakar dengan udara menghasilkan beberapa tempat yang kekurangan oksigen. Semakin rendah perbandingan antara udara dengan minyak bakar, semakin tinggi jumlah karbon monoksida yang dihasilkan.

Penyebaran gas CO di udara tergantung pada keadaan lingkungan. Untuk daerah perkotaan yang banyak kegiatan industrinya dan lalu lintasnya padat, udaranya sudah banyak tercemar oleh gas CO. Sedangkan daerah pinggiran kota atau desa, cemaran CO di udara relatif sedikit. Ternyata tanah yang masih terbuka di mana belum ada bangunan di atasnya, dapat membantu penyerapan gas CO. Hal ini disebabkan mikroorganisme yang ada di dalam tanah mampu menyerap gas CO yang terdapat di udara. Angin dapat mengurangi konsentrasi gas CO pada suatu tempat karena dipindahkan ke tempat lain.

Kendaraan bermotor merupakan sumber polutan CO yang utama (sekitar 59,2%), maka daerah-daerah yang berpenduduk padat dengan lalu lintas ramai memperlihatkan tingkat polusi CO yang tinggi. Konsentrasi CO di udara per waktu dalam satu hari dipengaruhi oleh kesibukan atau aktivitas kendaraan bermotor yang ada. Semakin ramai kendaraan bermotor yang ada, semakin tinggi tingkat polusi CO di udara.

Konsentrasi CO di udara pada tempat tertentu dipengaruhi oleh kecepatan emisi (pelepasan) CO di udara dan kecepatan dispersi dan pembersihan CO dari udara. Pada daerah perkotaan kecepatan pembersihan CO dari udara sangat lambat, oleh karena itu kecepatan dipersi dan pembersihan CO dari udara sangat menentukan konsentrasi CO di udara.

Kecepatan dispersi dipengaruhi langsung oleh faktor-faktor meteorologi seperti kecepatan dan arah angin, turbulensi udara, dan stabilitas atmosfer. Di kota-kota besar, meskipun turbulensi ditimbulkan karena adanya kendaraan yang bergerak dan aliran udara di atas dan di sekeliling bangunan, tetapi karena keterbatasan ruangan maka gerakan udara sangat terbatas sehingga konsentrasi CO di udara dapat meningkat.

Dampak CO Terhadap Kesehatan

Sumber:

Fardiaz, Polusi Air dan Udara, 1992

Wardhana, Dampak Pencemaran Lingkungan, 2001

Partikulat (PM)

Partikel adalah pencemar udara yang dapat berada bersama-sama dengan bahan atau bentuk pencemar lainnya. Partikel dapat diartikan secara murni atau sempit sebagai bahan pencemar udara yang berbentuk padatan. Namun dalam pengertpartikulat-debuian yang lebih luas, dalam kaitannya dengan masalah pencemaran lingkungan, pencemar partikel dapat meliputi berbagai macam bentuk, mulai dari bentuk yang sederhana sampai dengan bentuk yang rumit atau kompleks yang kesemuanya merupakan bentuk pencemaran udara.

Sumber pencemaran partikel dapat berasal dari peristiwa alami dan dapat juga berasal dari aktivitas manusia. Pencemaran partikel yang berasal dari alam, adalah sebagai berikut  :

a. Debu tanah/pasir halus yang terbang terbawa oleh angin kencang.

b. Abu dan bahan-bahan vulkanik yang terlempar ke duara akibat letusan gunung berapi.

c. Semburan uap air panas di sekitar daerah sumber panas bumi di daerah pegunungan.

Sumber pencemaran partikel akibat aktivitas manusia sebagian besar berasal dari pembakaran batubara, proses industri, kebakaran hutan dan gas buangan alat transportasi.

Debu adalah zat padat yang dihasilkan oleh manusia atau alam dan merupakan hasil dari proses pemecahan suatu bahan. Debu adalah zat padat yang berukuran 0,1 – 25 mikron. Debu termasuk kedalam golongan partikulat. Yang dimaksud dengan partikulat adalah zat padat/cair yang halus, dan tersuspensi diudara, misalnya embun, debu, asap, fumes dan fog.

Partikel menyebar di atmosfer akibat dari berbagai proses alami, seperti letusan vulkano, hembusan debu serta tanah oleh angin. Aktifitas manusia juga berperan dalam penyebaran partikel, misal dalam bentuk partikel debu dan asbes dari bahan bangunan, abu terbang dari proses peleburan baja dan asap dari proses pembakarana tidak sempuran, terutama dari batu arang. Sumber partikel yang utama adalah pembakaran bahan bakar dari sumbernya. Diikuti oleh proses– proses industri.

Partikel di atmosfer dalam bentuk suspensi, yang terdiri atas partikel– partikel padat cair. Ukuran partikel dari 100 mikron hingga kurang dari 0,01 mikron. Terdapat hubungan antara ukuran partikel polutan dengan sumbernya. Partikel sebagai pencemar udara mempunyai waktu hidup yaitu pada saat partikel masih melayang-layang sebagai pencemar di duara sebelum jatuh ke bumi. Waktu hidup partikel berkisar antara beberapa detik sampai beberapa bulan. Sedangkan kecepatan pengendapannya tergantung pada ukuran partikel, massa jenis partikel serta arah dan kecepatan angin yang bertiup.

Partikel debu dapat dibagi atas 3 jenis, yaitu debu organik, debu mineral, dan debu metal. Sumber debu bermacam-macam, tergantung jenis debunya. Partikel debu dipengaruhi oleh daya tarik bumi sehingga cenderung untuk mengendap di permukaan bumi. Partikel debu juga dapat membentuk “flok” sehingga ukurannya menjadi lebih besar permukaannya cenderung untuk basah. Sifat-sifat ini membuat ukurannya menjadi lebih besar sehingga memudahkan proses pengendapannya di permukaan bumi dengan bantuan gaya tarik bumi. Partikel debu dengan diameter 1 milimikron mempunyai kemampuan untuk menghamburkan sinar matahari.

Polusi udara oleh partikel berhubungan erat dengan SO2. Partikel SO2 berasal dari sumber yang sama yaitu pembakaran bahan bakar fosil yang satu sama lain saling bereaksi secara sinergis dalam memberikan dampak terhadap kesehatan manusia. Benda partikel ini sering disebut sebagai asap atau jelaga, benda-benda partikulat ini sering merupakan pencemar udara yang paling kentara dan biasanya juga paling berbahaya.

Sebagian benda partikulat keluar dari cerobong pabrik sebagai asap hitam tebal, tapi yang paling berbahaya adalah partikel-partikel halus butiran-butiran yang sangat kecil sehingga dapat menembus bagian terdalam paru-paru. Sebagian besar partikel halus ini terbentuk dengan polutan lain terutama sulfur dioksida dan oksida nitrogen dan secara kimiawi berubah dan membentuk zat-zat nitrat dan sulfat.

Partikulat digunakan untuk memberikan gambaran partikel cair atau padat yang tersebar di udara dengan ukuran 0,001 µm sampai 500 µm. Partikulat mengandung zat-zat organik maupun zat-zat non organik yang terbentuk dari berbagai macam materi dan bahan kimia. Ukuran partikel dapat menggambarkan seberapa jauh partikel dapat terbawa angin, efek yang ditimbulkannya, sumber pencemarannya dan lamanya masa tinggal partikel di udara.

Berdasarkan lamanya partikel tersuspensi di udara dan rentang ukurannya, partikel dapat dibedakan menjadi 2 macam yaitu dust fall (setteable particulate) dan suspended particulate matter (SPM). Dust fall adalah partikel berbentuk lebih besar dari 10 µm. SPM adalah partikel yang ukurannya lebih kecil dari 10µm dan keberadaannya terutama berasal dari proses industri dan pembakaran. Partikel yang masuk ke dalam paru-paru dapat membahayakan manusia karena:

a. Sifat-sifat kimia dan fisik dari partikel tersebut mungkin beracun

b. Partikel yang masuk tersebut bersifat inert

c. Partikel tersebut membawa molekul-molekul gas berbahaya dengan cara mengabsorbsi maupun mengadsorpsi yang menyebabkan molekul-molekul gas tersebut dapat mencapai dan tertinggal dalam paru-paru yang sensitif.

Benda partikulat, asap dan jelaga disebut benda partikel tetapi bentuk yang paling berbahaya dari benda padat ini adalah partikel-partikel sangat kecil dan halus yang dapat menembus ke dalam paru-paru yang hanya dilindungi oleh dinding tipis setebal molekul. Sering disebut PM10 karena benda partikel tersebut lebih kecil dari 10 mikron, kebanyakan partikel halus itu berasal dari senyawa sulfus dan nitrogen yang dalam selang waktu beberapa jam atau beberapa hari berubah dari gas menjadi padat.

Besarnya ukuran partikel debu yang dapat masuk ke dalam saluran pernafasan manusia adalah yang berukuran 0,1 µm sampai 10µm dan berada di udara sebagai suspended particulate matter. Partikel debu dengan ukuran lebih > 10 µm akan lebih cepat mengendap ke permukaan sehingga kesempatan terjadinya pemajanan pada manusia menjadi lebih kecil dan kalaupun terjadi akan tertahan oleh saluran pernafasan bagian atas. Debu yang dapat dihirup disebut debu inhalable dengan diameter ≤ 10 µm dan berbahaya bagi saluran pernafasan karena mempunyai kemampuan merusak paru-paru. Sebagian debu yang masuk ke saluran pernafasan berukuran 5 µm akan sampai ke alveoli.

Dampak Partikulat Terhadap Kesehatan

Sumber:

Wardhana, Dampak Pencemaran Lingkungan, 2001

Fardiaz, Polusi Air dan Udara, 1992

Identifikasi dan Karakteristik Limbah B3

I. Pendahuluan

limbah-b31Dalam pengeolaan limbah B3, identifikasi dan karakteristik limbah B3 adalah hal yang penting dan mendasar. Didalam pengelolaan limbah B3, prinsip pengelolaan tidak sama dengan pengendalian pencemaran air dan udara yang upaya pencegahanna di poin source sedangkan pengelolaan limbah B3 yaitu from cradle to grave. Yang dimaksud dengan from cradle to grave adalah pencegahan pencemaran yang dilakukan dari sejak dihasilkannya limbah B3 sampai dengan di timbun / dikubur (dihasilkan, dikemas, digudangkan / penyimpanan, ditransportasikan, di daur ulang, diolah, dan ditimbun / dikubur). Pada setiap fase pengelolaan limbah tersebut ditetapkan upaya pencegahan pencemaran terhadap lingkungan dan yang menjadi penting adalah karakteristik limbah B3 nya, hal ini karena setiap usaha pengelolaannya harus dilakukan sesuai dengan karakteristiknya.

Menurut PP 18 Tahun 1999 tentang pengelolaan limbah B3, pengertian limbah B3 adalah sisa suatu usaha dan atau kegiatan yang mengandung bahan berbahaya dan / atau beracun yang karena sifat dan / atau konsentrasinya dan / atau jumlahnya, baik secara langsung dapat mencemarkan dan / atau merusak lingkungan hidup, dan / atau membahayakan lingkungan hidup, kesehatan, keangsungan hidup manusia serta makhluk hidup lainnya.

Dari definisi diatas, semua limbah yang sesuai dengan definisi tersebut dapat dikatakan sebagai limbah B3 kecuali bila limbah tersebut dapat mentaati peraturan tentang pengendalian air dan atau pencemaran udara. Misalnya limbah cair yang mengandung logam berat tetapi dapat diolah dengan water treatment dan dapat memenuhi standat effluent limbah yang dimaksud maka, limbah tersebut tidak dikatakan sebagai limbah B3 tetapi dikategorikan limbah cair yang pengawasannya diatur oleh Pemerintah.

II. Identifikasi Limbah B3

Alasan diperlukannya identifikasi limbah B3 adalah:

  1. mengklasifikasikan atau menggolongkan apakah limbah tersebut merupakan limbah B3 atau bukan.
  2. menentukan sifat limbah tersebut agar dapat ditentukan metode penanganan, penyimpanan, pengolahan, pemanfaatan atau penimbunan.
  3. menilai atau menganalisis potensi dampak yang ditimbulkan tehadap lingkngan, atau kesehatan manusia dan makhluk hidup lainnya

Tahapan yang dilakuka dalam identifikas limbah B3 adalah sebagai berikut:

  1. Mencocokkan jenis limbah dengan daftar jenis limbah B3 sebagaimana ditetapkan pada lampiran 1 (Tabel 1,2, dan 3) PP 85/1999.
  2. Apabila tidak termasuk dalam jenis limbah B3 seperti lampiran tersebut, maka harus diperiksa apakah limbah tersebut memiliki karakteristik: mudah meledak, mudah terbakar, beracun, bersifat reaktif, menyebabkan infeksi dan atau bersifat infeksius.
  3. apabila kedua tahap telah dijalankan dan tidak termasuk dalam limbah B3, maka dilakukan uji toksikologi.

III. Karakteristik Limbah B3

Selain berdasarkan sumbernya (Lampiran 1,2 dan 3 PP 85/1999), suatu limbah dapat diidentifikasi sebagai limbah B3 berdasarkan uji karakteristik. Karakteristik limbah B3 meliputi:

mudah meledak

mudah terbakar

bersifat reaktif

beracun

menyebabkan infeksi

dan bersifat korosif

Suatu limbah diidentifikasikan sebagai limbah B3 berdasarkan karakteristiknya apabila dalam pengujiannya memiliki satu atau lebih kriteria atau sifat karakteristik limbah B3.

Gas Rumah Kaca – Pemanasan Global

Gas rumah kaca

Gas-gas rumah kaca (Green House Gases) adalah beberapa jenis gas yang terperangkap di atmosfer dan berfungsi seperti atap rumah kaca yang mampu meneruskan radiasi gelombang panjang matahari, namun menahan radiasi inframerah yang diemisikan oleh permukaan bumi.

Gas-gas yang dimaksud antara lain adalah Karbon diokasida (CO2), Metan (CH4), Nitrous Oksida (N2O), Hydrofluorokarbon (HFCs), Perfluorokarbon (PFCs) dan Sulfur heksaflorida (SF6)

Sumber gas-gas rumah kaca tersebut dapat terbagi menjadi dua yaitu alami dan akibat aktifitas manusia. Gas rumah kaca yang terjadi secara alami adalah CO2, methane. Sedangkan gas yang dihasilkan akibat aktifitas manusia antaralain CO2 (Proses pembakaran bahan bakar fosil), NO2 (aktifitas pertanian dan industri), CFC, HFC, PFC (proses industri dan konsumen)

Selubung gas rumah kaca tepatnya terdapat di lapisan troposfer pada ketinggian 7-16 km diatas permukaan bumi.

Umur Gas buang di Atmosfer

Gas

Sumber Antropogenik utama

Waktu residu

Umur (tahun)

CO

Pembakaran bahan bakar fosil dan biomas

Bulanan

0,4

CO2

Pembakaran bahan bakar fosil dan Pembabatan hutan

100 tahunan

7

CH4

Pertanaman padi

Peternakan, tanam Produksi bahan bakar fosil

10 tahunan

11

Nox

Pembakaran bahan bakar fosil dan biomas

harian

***

NO2

Pemupukan Nitrogen

Pembabatan hutan

Pembakaran biomas

170 tahunan

150

SO2

Pembakaran bahan bakar fosil dan emisi bahan bakar

Harian – mingguan

***

CFCs

Semprotan aerosol,

Pendingin, busa

60-100 tahunan

8 – 110

Sumber: Killeen. 1996 Ikhtisar Gas-gas Rumah Kaca di Atmosfer

Efek rumah kaca

Istilah yang digunakan untuk menjelaskan meningkatnya suhu udara di permukaan bumi”, akibat terus meningkatnya konsentrasi CO2 dan gas-gas rumah kaca (GRK) anthropogenic lainnya di atmosfer.

Proses terjadinya efek rumah kaca adalah sebagai berikut:

Sinar matahari memanaskan laut dan daratan. Permukaan bumi yang memanas, kemudian meradiasikan panas dalam bentuk sinar inframerah keruang angkasa. Sebagian sinar inframerah tersebut diserap oleh gas-gas rumah kaca yang terdapat di atmosfer, seperti uap air dan karbon dioksida. Dengan demikian panas terperangkap, tidak dapat lepas keruang angkasa, sehingga suhu permukaan bumi naik.

Jika efek rumah kaca tidak ada, suhu permukaan bumi akan menjadi 33 derajat celcius lebih rendah dibandingkan sekarang, sehingga berada dibawah titik beku air. Jadi dalam kondisi normal, efek rumah kaca ini sebenarnya diperlukan, agar bumi menjadi nyaman untuk dihuni.

Kadar alami karbon dioksida di atmosfer ini, dikendalikan oleh interaksi yang berlangsung antara atmosfer, lautan dan biospher, yang dikenal sebagai daur geokimia karbon. Aktifitas manusia yang melepaskan karbon berlebihan, telah mengganggu daur karbon ini. Akibatnya kadar karbondioksida di atmosfer bertambah tinggi, yang selanjutnya meningkatkan efek rumah kaca tersebut

Pemanasan global (global warming)

Pemanasan global adalah terjadinya kecenderungan meningkatnya suhu udara dipermukaan bumi dan lapisan atmosphere bawah dari waktu ke waktu, akibat terjadinya efek rumah kaca (green house effect).

Hasil pengukuran menunjukkan bahwa pada dekade sekarang ini telah terjadi kenaikan rata-rata suhu udara antara 0.3-0.6oC. Bila emisi gas-gas rumah kaca terus meningkat dengan laju peningkatan seperti sekarang maka diperkirakan pada tahun 2030 rata-rata kenaikan suhu udara akan berkisar antara 3 sampai 5oC dan menyebabkan perubahan iklim global

Konsentrasi gas rumah kaca – Pemanasan Global – Perubahan Iklim

Adanya gas-gas rumah kaca di atmosfir menyebabkan efek rumah kaca di bumi

Konsentrasi gas-gas rumah kaca yang tidak seimbang di atmosfir mengakibatkan pemanasan global dan perubahan iklim

Dampak peningkatan konsentrasi gas rumah kaca:

Peningkatan radiasi gelombang panjang

Mempengaruhi variasi dan kecenderungan suhu udara

Mempengaruhi variasi dan kecenderungan curah hujan, yang mengakibatkan: banjir, kekeringan.

Produk Bersih (cleaner production)

Produk bersih merupakan salah satu pendekatan dalam pengelolaan ligkungan hidup. Konsep produk bersih adalah mencegah dan meminimalkan terbentuknya limbah atau bahan pencemar lingkungan diseluruh tahapan produksi. Disamping itu, produk bersih juga melibatkan upaya-upaya untuk meningkatkan efisien penggunaan bahan baku, dan bahan penunjang dan energi diseluruh tahapan produksi, sehingga dengan menerapkan konsep tersebut, diharapkan sumber daya alam dapat lebih dilindungi dan dimanfaatkan secara berkelanjutan. Dengan kata lain, produk bersih merupakan pengelolaan lingkungan yang bersifat preventif, terpadu dan diterapkan secara kontinyu pada proses produksi, produk dan jasa untuk meningkatkan ekoefisiensi sehingga mengurangi resiko terhadap kesehatan manusia dan lingkungan. Secara singkat, produk bersih memberikan dua keuntungan:

Meminimalkan terbentuknya limbah sehingga dapat melindungi kelestarian lingkungan hidup.

Efisiensi dalam proses produksi, sehingga dapat mengurangi biaya produksi.

Sebagai suatu strategi pengelolaan lingkungan yang bersifat preventif, produk bersih memberikan keuntungan dan manfaat antara lain:

menghemat dalam pemakaian bahan baku

mengurangi biaya pengolahan limbah

mencegah terjadinya kerusakan lingkungan

mengyrangi bahaya terhadap kesehatan dan keselamatan kerja

meningkatkan daya saing produk

meningkatkan image yang baik terhadap perusahaan.

Para pengusaha mulai menerapkan strategi produk bersih didalam pengembangan usahanya dikarenakan:

Meningkatnya daya saing dan keberlanjutan usahanya, mengingat semakin besarnya peranan lingkungan hidup dalam kebijakan internasional. (Prasyarat memiliki ISO 14000 untuk dapat ekspor ke Eropa)

Memperoleh keuntungan ekonomis dengan adanya peningkatan efisien dan efektifitas di segala aspek.

Dengan menjalankan strategi produk bersih, perusahaan dapat menurunkan biaya produksi dan biaya pengolahan limbah serta sekaligus mengurangi terjadinya kerusakan dan pencemaran lingkungan

Prinsip-prinsip pokok dalam strategi bersih adalah sebagai berikut:

1. Menguragi dan meminimalkan penggunaan bahan baku, air dan energi serta menghindari pemakaian bahan baku beracun dan berbahaya serta mereduksi terbentuknya limbah pada sumbernya sehingga mencegah atau mengurangi dari timbulnya masalah pencemaran dan kerusakan lingkungan serta resikonya terhadap manusia.

2. Perubahan dalam pola produksi dan konsumsi berlaku baik pada proses maupun produk yang dihasilkan.

3. Upaya produk bersih ini tidak dapat berhasil dilaksanakan tanpa adanya perubahan dan pola pikir, sikap dan tingkah laku dari semua pihak terkait baik pemerintah, masyarakat maupun kalangan dunia usaha dalam mempertimbangkan aspek lingkungan.

4. Mengaplikasikan teknologi akrab lingkungan, manajemen dan prosedur standar operasional sesuai dengan persyaratan yang ditetapkan.

5. pelaksanaan program produksi bersih lebih mengarah pada pengaturan diri sendiri (self regulation) daripada pengaturan secara command and control. Jadi pelaksanaan program produ bersih ini tidak hanya mengandalkan peraturan saja, tetapi lebih didasarkan pada kesadaran untukmerubah sikap dan tingkah laku.

Prinsip dalam produk bersih diaplikasikan dalam bentuk kegiatan yang dikenal dengan 4R, yaitu:

1. Reuse (penggunaan kembali) adalah suatu upaya yang memungkinkan suatu limbah dapat digunakan kembali tanpa mengalami perlakuan fisika, kimia atau biologi.

2. Reduction (pengurangan limbah) pada sumbernya adalah upaya yang dapat mengurangi atau mencegah timbulnya pencemaran diawal produksi.

3. Recovery adalah upaya untuk memisahkan suatu bahan atau energi dari suatu limbah untuk kemudian dikembangkan kedalam suatu proses produksi dengan atau tanpa perlakuan fisika, kimia dan biologi.

4. Recycling atau daur ulang adalah teknologi yang berfungsi untuk memanfaatkan limbah dengan prosesnya kembali ke proses semula yang dapat dicapai melalui perlauan fisika, kimia ataupun biologi.